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To the best of our knowledge there is only one example of a lattice system with
long-range two-body interactions whose ground states have been determined
exactly: the one-dimensional lattice gas with purely repulsive and strictly convex
interactions. Its ground-state particle configurations do not depend on any
other details of the interactions and are known as the generalized Wigner lat-
tices or the most homogeneous particle configurations. The question of the
stability of this beautiful and universal result against certain perturbations of the
repulsive and convex interactions is interesting in itself. Additional motivations
for studying such perturbations come from surface physics (adsorption on crys-
tal surfaces) and theories of correlated fermion systems (recent results on
ground-state particle configurations of the one-dimensional spinless Falicov�
Kimball model). As a first step, we studied a one-dimensional lattice gas whose
two-body interactions are repulsive and strictly convex only from distance 2 on,
while its value at distance 1 can be positive or negative, but close to zero. We
showed that such a modification makes the ground-state particle configurations
sensitive to the tail of the interactions; if the sum of the strengths of the interac-
tions from the distance 3 on is small with respect to the strength of the interac-
tion at distance 2, then particles form two-particle lattice-connected aggregates
that are distributed in the most homogeneous way. Consequently, despite break-
ing of the convexity property, the ground state exhibits the feature known as the
complete devil's staircase.
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1. INTRODUCTION

The class of most thoroughly investigated models of present day equi-
librium statistical mechanics consists almost exclusively of lattice gases with
translation-invariant short-range interactions. On the top of this class there
is certainly the lattice gas known as the two-dimensional Ising model. The
first step in a study of low-temperature properties of such systems amounts
usually to determining their ground states.(1) Provided that the underlying
interactions are short-range, numerous methods of searching for ground-
state configurations are available. In the case of one-dimensional lattice
systems, there is even an algorithmic method. (2, 3) In higher dimensions, let
us mention the powerful method of m-potential which is successful in many
cases of interest.(1)

However, if the translation-invariant interactions are long-range ones,
the situation is drastically different. Rigorous results are scarce. To the best
of our knowledge there exist only two kinds of interactions for which
rigorous results have been obtained: (1) a version of one-dimensional
Frenkel�Kontorova model (results of Aubry(4)) and (2) a one-dimensional
lattice-gas model with strictly convex repulsive two-body interactions
(results of Hubbard (5) and Pokrovsky and Uimin(6)). The continuous
systems with more intricate classes of two-body interactions which include
the Lennard-Jones type interactions, have been studied first by Ventevogel;(7)

an overview of the results by Ventevogel and other authors together with
corresponding references can be found in a review paper by Radin.(8)

We would like to point out here that studying these one-dimensional
systems involves important scientific issues, well supported by the physics of
quasi-one-dimensional materials, (9) highly anisotropic layered systems, (10)

and adsorption of molecules on crystal surfaces.(11�14)

The lattice-gas models with purely repulsive and strictly convex two-
body interactions emerged from considerations of orderings of electrons in
quasi-one-dimensional conductors by Hubbard(5, 9) and orderings of
monolayers of atoms adsorbed on solids by Pokrovsky and Uimin.(6) The
model still appears to be a cameo in this field. The periodic groundstate
particle configurations of this model have been characterized exactly in
refs. 5 and 6. Particles are distributed as far as possible from each other,
respecting restrictions imposed on their locations by the underlying lattice.
These configurations, called by Hubbard the generalized Wigner lattices, (5)

are independent of any further details of the interaction potential.
Moreover, the ground-state exhibits an interesting feature known as the
complete devil's staircase.(15, 4)

In view of such an impressing universality of the result obtained inde-
pendently by Hubbard and by Pokrovsky and Uimin, the question of the
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stability of this result against some perturbations of the interactions seems
natural and interesting from the point of view of statistical mechanics.

Moreover, the interest in this question is supported by other domains
of physics. In surface physics a remarkable activity consists in studying,
both experimentally and theoretically, orderings of molecules adsorbed on
crystal surfaces.(16) The phenomenon can be modelled by means of one-
dimensional lattice gases(11�14) with specific two-body interactions, which
sometimes constitute certain local perturbations of strictly convex repulsive
interactions.(11, 12) One of the often asked questions in this context is
whether a non-convex interaction can have a ground-state with the com-
plete devil's staircase property. Let us also mention here some other
models, where effects of nonconvexity for the occurrence of modulated
order in condensed matter was studied: Frenkel�Kontorova models(17, 18)

and one-dimensional Holstein model.(19)

Another motivation for studying effects of modifications of repulsive
and strictly convex two-body interactions stems from the recent results
concerning ground states of a version of the Falicov�Kimball model(20)��
the one-dimensional spinless Falicov�Kimball model. The model can be
thought of as a model of quantum itinerant electrons and classical localized
particles called f-electrons, nuclei or ions, (21, 22) with only on-site interac-
tions whose strength is the unique parameter of the model��a sort of the
Ising model in the field of correlated fermion systems. Such a system can
be transformed into a classical lattice-gas model with fairly complicated
long-range and many-body interactions.(22) Many years after the discovery
of the generalized Wigner lattices, Lemberger(23) found the periodic
ground-state configurations of the localized particles in the large-coupling
one-dimensional spinless Falicov�Kimball model. He named them the most
homogeneous configurations because of the special role they play in his
ingenious procedure of differentiation and integration of particle configura-
tions. It turns out that the configurations found by Lemberger are just the
generalized Wigner lattices. Despite the complicated nature of the effective
interaction between electrons and ions, for some details see ref. 24, there is
a numerical evidence(25, 26) (based on the approximate method of restricted
phase diagrams) that in the strong-coupling regime it can be approximated
by a repulsive and strictly convex two-body potential that has the same set
of periodic ground-state configurations. Further studies of the ground-state
phase diagram of the one-dimensional spinless Falicov�Kimball model,
carried out in refs. 25 and 26, revealed for medium and small couplings a
number of new families of good candidates for ground-state configurations.
Among them are the so-called n-molecule most homogeneous configurations,
found for the first time and studied it detail in ref. 25. Roughly speaking,
they are obtained from the most homogeneous configurations by replacing

591Lattice Gases with ``Almost'' Convex Repulsive Interactions



single particles by lattice-connected aggregates of n=2, 3,... particles. The
arguments in favor of the existence of n-molecule most homogeneous con-
figurations, provided in ref. 25, are based not only on the approximate
method of restricted phase diagrams but also on the study of the interac-
tion energy between a few ions only. It has been found that for large values
of the unique parameter, for which the most homogeneous configurations
are the ground-state configurations, the interaction energy between a few,
say two or three, ions is strictly convex. On the other hand, for those
values of the unique parameter for which the n-molecule most homoge-
neous configurations are the ground-state configurations, the interaction
energy between two or three ions gets considerably lowered at short distan-
ces (which apparently encourages forming n-molecules) and consequently it
becomes non-convex at short distances. These results led us naturally to
the question whether it is possible to obtain the n-molecule most homoge-
neous configurations as ground-state configurations of a lattice gas with
two-body interactions, by modifying, at short distances only, the two-body
interactions whose ground-state configurations are the most homogeneous
ones.

What we have said above explains, hopefully, why one-dimensional
lattice gases with non-convex two-body interactions are of interest. Let us
overview now our results. It seems that for the first time after the
papers(5, 6) concerned with ground states of strictly convex two-body inter-
actions on the one-dimensional lattice, we succeeded in describing
rigorously the ground state of a non-convex interaction. The convexity
property is destroyed up to distance n=2, at distance 1 the value of the
considered interactions is set near zero. We prove that if the sum of the
strengths of the interactions from distance 3 on is small with respect to the
strength of the interaction at distance 2, then its ground-state configura-
tions appear to be close analogs of the most homogeneous configurations,
the so called 2-molecule most homogenous configurations (most homoge-
neous configurations of dimers). As a consequence the ground state has the
complete devil's staircase property. Thus, we answer positively the above
questions, at least in the case n=2 which we have considered as a first step
of our investigations.

Needless to say that we believe the sort of result we obtained to be
valid for any n, that is for interactions with values near zero for distances
up to n&1 and strictly convex from distance n on. However, a proof along
the lines of the case n=2 seems to be technically complicated.

The paper is organized as follows. In Section 2, we introduce the
system under consideration and give basic definitions. Then, in Section 3
we formulate our hypothesis. provide examples that reveal problems that
have to be solved on the way towards the final result, and sketch our

592 Je� drzejewski and Mie� kisz



strategy of proving the hypothesis. A relatively simple part of this strategy,
Lemma 0, is proved in this section. After that we prove our main theorem,
Theorem 1, by means of Lemma 0, 1, and 2. The proofs of Lemma 1 and
2 are given in Section 4 and constitute the major part of the paper. Finally,
in Section 5 we provide a discussion of the obtained results, describe limita-
tions and possible extensions. Some technical definitions and statements
that are used throughout the text are collected in the Appendix.

2. LATTICE-GAS MODELS AND DEVIL'S STAIRCASES

A classical lattice-gas model, considered here, is a system in which
every site of a one-dimensional lattice Z can be occupied by one particle
or be empty. Then, an infinite-lattice configuration is an assignment of par-
ticles to lattice sites, i.e., an element of 0=[1, 0]Z. If X # 0 and 4/Z,
then we denote by X4 a restriction of X to 4. We assume that the particles
interact only through two-body forces and to a pair of particles at lattice
sites i and j, whose distance is |i& j |, we assign the translation-invariant
interaction energy V( |i& j | ). The corresponding two-body potential reads:
V( |i& j)| ) si (X ) sj (X ), where [si (X ), i # Z] are occupations of sites in a
configuration X; si (X ) assumes value 1 if in the configuration X the site i
is occupied by a particle and otherwise value 0. In terms of the above
defined potential, the Hamiltonian of our system in a bounded region 4
amounts to the sum of the potential over all pairs of sites having nonempty
intersection with 4:

H4(X )= :
[[i, j ] : [i, j ] & 4{<]

V( |i& j | ) si (X ) sj (X ) (1)

For Y, X # 0, we say that Y is a local excitation of X, and write YtX,
if there exists a bounded 4/Z such that X=Y outside 4.

For YtX, the relative Hamiltonian is defined by

H(Y, X )= :
[[i, j ] : [i, j ] & 4{<]

(V( |i& j | ) si(Y ) sj (Y )&V( |i& j | ) si(X ) sj(X ))

(2)

We say that X # 0 is a ground-state configuration of H if

H(Y, X )�0 for any YtX

That is, we cannot lower the energy of a ground-state configuration by
changing it locally.
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The energy density e(X ) of a configuration X is

e(X )=lim inf
4 � Z

H4(X )
|4|

(3)

where |4| is the number of lattice sites in 4. In a similar way we define the
particle density in a configuration X, denoted by \(X )��the Hamiltonian in
(3) has to be replaced by the number of particles in the region 4.

It can be shown that any ground-state configuration has the minimal
energy density which means that local conditions present in the definition
of a ground-state configuration enforce global minimum of the energy
density.(27)

For certain values of external parameters, like the chemical potential
or the particle density (depending on the used Gibbs ensemble), our
models do not have periodic ground-state configurations. However, for any
fixed value of such an external parameter, all ground-state configurations
belong to one local isomorphism class. It means that they cannot be locally
distinguished one from another. Every local pattern of particles present in
one ground-state configuration appears in any other within a bounded dis-
tance. More formally, there exists a unique translation-invariant probability
measure supported by ground-state configurations. It is then necessarily the
zero-temperature limit of equilibrium states (i.e., translation-invariant
Gibbs states).(28)

In this paper, by the ground state of a model we mean precisely the
above defined probability measure.

If a system has a unique periodic ground-state configuration and its
translations (this happens in our models for those values of the chemical
potential that fix a rational particle density), then a unique ground-state
measure assigns an equal probability to all these translations. For example,
the Ising antiferromagnet has two alternating ground-state configurations
but only one ground-state measure which assigns probability 1�2 to both
of them.

In the non-periodic case, a probability ground-state measure P gives
equal weights to all ground-state configurations and can be obtained as a
limit of averaging over a given ground-state configuration X and its trans-
lations {a X by lattice vectors a # Z: P=lim4 � Z(1�|4| ) �a # 4 $({aX ), where
$({aX ) is a probability measure assigning probability 1 to {a X.

One more remark concerning ground states discussed here is in order.
We consider exclusively the ground-state measures that are strictly
ergodic.(29, 30) In particular, every ground-state configuration in their sup-
port has uniformly defined densities of all local particle configurations.
Moreover, if a local particle configuration occurs, then it occurs with a
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positive density. That is to say, we do not consider ground-state configura-
tions with interfaces (like kink ground-state configurations in the Ising
model).

We say that a set 4/Z is lattice-connected if for every pair of lattice
sites i, j # 4 there is a sequence i1 ,..., in such that i1=i, in= j and ik , ik+1 ,
k=1,..., n&1 are the nearest-neighbor sites.

In the sequel, in order to describe some local configurations X4 , Y4 ,
for a lattice-connected 4, we find it convenient to introduce on Z a coor-
dinate-axis with lattice sites located at integer points and to call the
positive direction the right one while the opposite direction��the left one.
The environment of 4, Z&4, splits naturally into the left environment, con-
sisting of the sites preceding 4, and the right environment, consisting of the
sites following 4. It will also be convenient to set the zero of the axis at the
last occupied site of the left environment so that the position of a particle
in 4 is positive and coincides with its distance to the left environment. The
coordinate-axis introduced will be briefly called x-axis.

We assume that the interaction energy of two particles separated by
distance r, V(r), is summable and for r�r0 it is positive and strictly convex
(see the Appendix), hence decreasing. Such an interaction energy is
denoted by Vr0

(r). It is convenient to normalize Vr0
(r) in such a way that

limr � � Vr0
(r)=0.

Then, we define the interaction energy of a particle at a site r in 4 with
the left environment of 4, V L

r0
(r), as the sum of interaction energies

Vr0
(r& j) over all occupied sites j in the left environment. The properties of

the interaction energy Vr0
imply that, for r�r0 , the function V L

r0
(r) is

positive, strictly convex, and decreasing.
In what follows some particle configurations play a distinguished part.

Among local configurations that appear frequently in our considerations
are atoms, i.e., occupied sites whose nearest-neighbor sites are empty. The
location of an atom is identified with the location of the occupied site.
Another local configuration is a lattice-connected set of n, n�2, occupied
sites whose left and right nearest-neighbor sites are empty. It is called the
n-molecule. The location of a n-molecule is identified with the location of the
first particle of the molecule, i.e., the one with the smallest x-coordinate.
Consequently, the distance between two n-molecules is identified with the
distance between the first particle of one n-molecule and the first particle
of the other n-molecule.

However, our attention is focused on global participle configurations
which can be characterized as follows. For every particle density \, there
is a unique sequence of natural numbers dn , such that the separations
between any pair of n-th nearest-neighbor particles are dn or dn+1. Such
configurations have been called the generalized Wigner lattices(5) or the
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most homogeneous configurations.(23) If the particle density is rational, then
the corresponding most homogeneous configurations are periodic (the par-
ticle locations can be given by means of a construction given for instance
in ref. 5) while for irrational densities they are non-periodic.

At least in this paper, the main reason of interest in the most homoge-
neous configurations stems from the following theorem:

Theorem 0 (Most homogeneous ground-state configurations). In
the canonical ensemble, i.e., for a given particle density \, the ground-state
configurations of a lattice gas (1) with an interaction energy V1 are the
most homogeneous configurations.

This statement has been proven (or at least a proof has been outlined)
by Hubbard(5) and Pokrovsky and Uimin.(6) The ground-state phase
diagram in the grand-canonical ensemble has been calculated heuristically
by Bak and Bruinsma(15) while a proof for the related Frenkel�Kontorova
model has been provided by Aubry(4) and adapted to the lattice-gas model
case by Mie� kisz and Radin;(31) it is outlined below.

In the grand-canonical ensemble, to find the energy density of a
ground state we have to minimize

f (\)=e(\)&+\ (4)

Now, e(\), i.e., the ground-state energy density for the particle density \,
is differentiable at every irrational \ and is nondifferentiable at any rational
\.(4, 31) However, as a convex function, it has a left derivative d &e(\)�d\
and a right derivative d +e(\)�d\ at every \. It follows, that to have a
ground state with an irrational density \ of particles, one has to fix +(\)=
de(\)�d\. For any rational \, there is a closed interval of chemical poten-
tials [d &e(\)�d\, d +e(\)�d\], where the most homogeneous configura-
tions of density \ are the ground-state configurations. One can show that
the sum of lengths of these intervals amounts to the length of the interval
beginning at the end of the half-line, where the vacuum is the only ground-
state configuration, and ending at the beginning of the half-line, where the
completely filled configuration is the only ground-state configuration.

As we have already mentioned, for any rational \, there is a unique
(up to translations) periodic ground-state configuration with that density
of particles��there is a unique ground-state measure. For any irrational \,
there are uncountably many ground-state configurations which are the
most homogeneous configurations. It has been shown in ref. 32 that there
is still the unique ground-state measure supported by them.

The particle density versus the chemical potential of particles, \(+), is
constant in each set of this partition. Moreover, it is a continuous function
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on the real line and is inversion symmetric with respect to the point
(+0 , \(+0)), where +0 is the chemical potential for which the free energy
density is hole-particle symmetric (\(+0)=1�2). The curve \(+) is classified
as a fractal one and named the complete devil's staircase.(4)

The last remark is that without any loss of generality we can restrict
our considerations to systems whose particle density \ does not exceed 1�2.
Then the most homogeneous configurations consist exclusively of atoms.

3. BASIC IDEAS AND THE MAIN RESULT

Whether we follow the argument of Hubbard(5) (based on a version of
our Lemma A1) or the argument of Pokrovsky and Uimin(6) that proves
Theorem 0, we find that such a proof consists essentially of two stages. In
the first stage we ``chop'' configurations that contain n-molecules with some
n=2, 3,... off the set of all configurations with particle density \, so we are
left only with configurations that are composed of atoms whose density is
\. The second stage is like a ``fine tuning'' that amounts to precise adjusting
the positions of atoms in order to minimize the energy density.

Is the strategy outlined above useful if the two-body strictly convex for
r�1 interaction energy V1 , that appears in Theorem 0, is replaced by an
interaction energy Vr0

which is strictly convex only for r�r0 , r0=2, 3,...?
Consider first the second stage. Suppose that the set of configurations

composed of atoms only is replaced by the set of configurations that con-
sist exclusively of n-molecules with fixed n, separated by at least distance
r0+n&1. Let the particle density of these n-molecule configurations be \.
This class of configurations we denote by C n

r0 , \ . Clearly, the problem of
determining the ground-state configurations in C n

r0 , \ can be reduced to the
analogous problem but in the class C 1

r0 , \�n and with Vr0
replaced by the

effective two-body interaction between n-molecules, V (2)
r0

. This effective inter-
action can be naturally defined as the sum of interactions Vr0

between
ordered pairs of particles such that the first member of a pair belongs to
one n-molecule while the second member��to the other n-molecule:

V (2)
r0

(r)=nVr0
(r)+(n&1)(Vr0

(r+1)+Vr0
(r&1))

+(n&2)(Vr0
(r+2)+Vr0

(r&2))+ } } } +(Vr0
(r&n+1)

+Vr0
(r+n&1)) (5)

where r stands for the distance between the two considered n-molecules.
Since the function V (2)

r0
(r) is a sum of functions that are strictly convex

for r�r0 , it is also strictly convex for r�r0 . This implies that in the
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ground-state configurations, the first particles of n-molecules form the most
homogeneous configurations with particle density \�n, and the same holds
true for the second particles of n-molecules, etc. Thus, it is natural to call
the obtained ground-state configurations the n-molecule most homogeneous
configurations of particle density \. We summarize the above considera-
tions in the following lemma:

Lemma 0 (Ground-state configurations restricted to C n
r0 , \). In a

lattice gas (1) with an interaction energy Vr0
, the ground-state configurations

restricted to C n
r0 , \ are the n-molecule most homogeneous configurations.

Having generalized successfully the stage two, it is tempting to turn to
the stage one. Can we modify V1 in such a way that the ground-state con-
figurations are in C n

r0 , \ ? The general suggestion that comes from studies of
the Falicov�Kimball model(25) is to set the values of the two-body interac-
tion energy at short distances close to zero. One might expect that setting
V1(1)=0 will force the system to form 2-molecules exclusively in the
ground-state configurations. However, in order to arrive at such a result,
one has to deal with other features of the interaction energy. At this point
it is instructive to turn to examples.

Example 1. Consider the convex two-body interaction energy V
that in some units is given by V(1)=0, V(2)=4, V(3)=2, V(4)=1,
V(r)=0, for r�5, and two periodic configurations (period 17) of particle
density \=8�17 whose elementary cells are of the form:
[ v v b b b v v v b b b v v v b b b ]1 and [ v v b b v v b b v v b b v v b b b ]2 ,
where v stands for a particle while b��for an empty site. The energy per
elementary cell in the first case is 2V(2)+3V(4)=11, while in the second
case it is 3V(3)+7V(4)=13. Thus the configuration [ . ]2 , which consists
exclusively of 2-molecules, looses against the configuration [ . ]1 , which
consists of 2-molecules and 3-molecules. While the interaction energy
chosen is not strictly convex, it is easy to see that the above result remains
true if we do not set V(r)=0 for r�5 but extend V(r) to some V1 , with
V1(r) positive and arbitrarily small from r=6 on. We deal with the above
problem in Lemma 2 which tells us that to exclude n-molecules with n�3
from competition one should impose a condition on the relative strength of
V1(2) with respect to V1(r) with r�3. Namely, it is sufficient to require
that the energy of the ``tail'' of V2 , defined as W=��

r=3 V2(r), is weak
enough compared to V2(2)+V2(1)�2, i.e., V2(2)+V2(1)�2�7W�2.

Example 2. This example shows that configurations containing
atoms are unlikely to be the ground-state ones. Let the two periodic
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configurations of particle density \=3�11 be of the form: [ v v(5 b ) v v(5 b )
v v(6 b )]3 (period 22) and [ v v(4 b ) v(4 b )]4 (period 11). The notation
``(5 b )'' stands for five empty sites in a row, etc. If V(r)=0 for r>8, then
the energy per cell of 22 sites amounts to 2V(6)+5V(7)+4V(8), in the
case of [ . ]3 , and to 4V(5)+4V(6), in the case of [ . ]4 . Now, let the inter-
action energy V2 be chosen to coincide with the finite-range interaction
energy defined as follows: V(1) is non-positive, V(2)=28, V(3)=21,
V(4)=15, V(5)=10, V(6)=6, V(7)=3, V(8)=1, in some units, while for
r�9, V2(r) is an arbitrarily small positive extension of this function to a
strictly convex function. For such V2 the configuration [ . ]3 wins over-
whelmingly.

Summing up, in order to implement the stage two in the case of a non-
convex interaction energy V2 , we have to force the system, by modifying its
interactions, to make the configurations containing n-molecules with
n�3, 4,... unfavorable energetically, and to show generally that for such
interactions the configurations containing atoms cannot be ground-state
ones. The latter problem is dealt with in Lemma 1.

Lemma 1 applied for instance to the configuration [ . ]4 tells us that,
for any V2 such that V2(1)�0, if we take twice larger elementary cell and
rearrange the two atoms and the 2-molecule separating them, so that they
form two 2-molecules distributed as follows: [ v v (6 b ) v v(4 b ) v v(6 b )]5 ,
then we lower the energy. By Lemma 0, we can farther lower the energy by
adjusting the distances between the 2-molecules so that the resulting con-
figuration is the 2-molecule most homogeneous one: [ v v(5 b ) v v(6 b ) v v
(5 b )]6 .

What we have said above, summarized in Lemma 0, 1, and 2, shows
that the strategy that lead to the proof of Theorem 0, which was concerned
with strictly convex interaction energies, can be applied also to some non-
convex interaction energies V2 .

Theorem 1 (2-molecule most homogeneous ground-state configura-
tions). Consider a lattice gas (1) with a non-convex interaction energy V2

and a particle density \�1�2. If V2(1)=0 and V2(2)�7W�2, where W=
��

r=3 V2(r), then the ground-state configurations in the support of the
strictly ergodic ground-state measure are the 2-molecule most homoge-
neous configurations of particle density \.

Corollary (Complete devil's staircase). In a lattice gas (1) whose
interaction energy V2 satisfies the conditions given in Theorem 1, the par-
ticle density versus the chemical potential of particles, \(+), exhibits the
complete devil's-staircase structure.
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4. TWO LEMMAS ON ELIMINATING ATOMS AND
n-MOLECULES WITH n�3

Lemma 1 (Eliminating atoms). Consider a lattice gas (1) with an
interaction energy V2 , such that V2(1)�0. Let X be a configuration that
does not contain n-molecules with n�3. Suppose that the local configura-
tion X4 , where 4 is a bounded lattice-connected subset of Z, contains two
atoms separated by k=0, 1, 2,... molecules. Then, by rearranging the
positions of particles in X4 , it is possible to construct a configuration
Y such that \(Y )=\(X ), YZ&4=XZ&4 , Y4 consists exclusively of k+1
2-molecules and e(Y )<e(X ).

Corollary. Among configurations that do not contain n-molecules
with n�3, the lowest energy configurations consist exclusively of 2-molecules.

Proof. We propose a proof by reductio ad absurdum. Let 4 be a
bounded lattice-connected subset of Z and suppose that a local configura-
tion X4 contains two atoms separated by k=0, 1, 2,... 2-molecules while
XZ&4 is arbitrary. The idea is to construct another configuration Y, with
YZ&4=XZ&4 and Y4 consisting of k+1 2-molecules exclusively, such
that the total energy change, H(Y, X ), is negative.

We start with describing X4 . Going from left to right, its 1st (or left)
atom is separated by a empty sites from the left environment, after the first
atom we meet the 1st 2-molecule separated from the 1st atom by n1 empty
sites, later on��the second 2-molecule separated from the 1st one by n2

empty sites and so on. The (i&1)th and the i th 2-molecules are separated
by ni empty sites. Finally the 2nd (or right) atom is separated from the last
2-molecule, i.e., the k th 2-molecule, by nk+1 empty sites and by b empty
sites from the right environment.

As it has been said above, in the new configuration Y, the configura-
tions of the left and right environments remain unchanged while Y4 is
obtained as follows. We start with the 1st atom and the left particle of the
1st 2-molecule in X4 and put them at the two nearest-neighbor sites
located in the center of the gap of n1 empty sites. Clearly, if n1 is even, then
the position of the new 2-molecule (the 1st 2-molecule in Y4)) is defined
uniquely, the center of gravity of the 2-molecule coincides with the
geometric center of the gap. On the other hand, if n1 is odd, then we can
speak of the left and right central positions of the 2-molecule. In the first
case the center of gravity of the 2-molecule is shifted by half the lattice
constant to the left of the geometric center of the gap while in the second
case��to the right. In the next step we create the 2nd 2-molecule of Y4 by
taking the right particle of the 1st 2-molecule and the left particle of
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the 2nd 2-molecule in X4 and putting them in the center of the gap made
by n2 empty sites. The procedure described is continued until k+1
2-molecules in Y4 is created. Each time the gap between the 2-molecules in
X4 is odd we have a choice of two central positions. Therefore we may end
up with as much as 2k+1 different configurations. In the sequel we shall
restrict ourselves to two simple choices, namely either we always choose
the left central position and the corresponding Y is labeled YL or we
always choose the right central position what leads to the configuration YR .

Our aim is to estimate the energy changes related to passing from X
to YL , H(YL , X ) and from X to YR , H(YR , X ). It is convenient to split the
total energy of X4 , E4(X ), into two parts: E4(X )=E int

4 (X )+E ext
4 (X ).

Here E int
4 (X ) is the internal energy, that is the sum of pair interaction

energies Vr0
(r) over all pairs of particles in X4 . The external energy of X4 ,

E ext
4 (X ), can in turn be represented as E ext

4 (X )=E L
4(X )+E R

4(X ), where
EL

4(X ) is the sum of pair interaction energies over all pairs of particles con-
sisting of one particle in the left environment at configuration XZ&4 and
one particle in 4 at configuration X4 , and E R

4(X ) is defined similarly.
Therefore

H(Y, X )=E*(Y )&E4(X )

=E L
4(Y )&E L

4(X )+E R
4(Y )&E R

4(X )+E int
4 (Y )&E int

4 (X ) (6)

for some Y.
The remaining part of our proof consists of two stages. In the stage

one we study only the external energy differences while in the stage two the
internal energy differences.

Stage One: Estimating External Energy Variation. Consider the pair
of particles that constitute the i th 2-molecule in YL . Let E L

i (YL) and
EL

i (X ) stand for the external interaction energy of that pair of particles
with the left environment at configurations YL and X, respectively. Then

EL
4(YL)&E L

4(X )= :
k+1

i=1

(E L
i (YL)&E L

i (X )) (7)

and similarly

ER
4(YL)&E R

4(X )= :
k+1

i=1

(E R
i (YL)&E R

i (X )) (8)

Therefore we are left with estimating the energy differences E L
i (YL)&

EL
i (X ) and E R

i (YL)&E R
i (X ) what requires a detailed description of posi-

tions, in configurations X and YL , of the two particles that constitute the
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ith 2-molecule in YL . In X, the particles mentioned are the right particle
of the (i&1)th 2-molecule whose position according to the x-axis is
denoted by x i and the left particle of the i th 2-molecule whose position is
then xi+ni+1. Let us recall that the positions mentioned coincide with the
distances between the particles considered and the left environment. In YL

the corresponding positions are xi+[ni �2] and x i+[ni �2]+1. Now we
are ready to express the energies EL

i (YL) and E L
i (X ) in terms of the inter-

action energy, V L
r0

(r), of a particle at r # 4 with the left environment (see
Section 2 for the definition and properties). Then

E L
i (X )=V L(xi )+V L(xi+ni+1) (9)

and

E L
i (YL)=V L(xi+[ni�2])+V L(xi+[ni �2]+1) (10)

Therefore

E L
i (YL)&E L

i (X )=(V L(x i+[ni �2])&V L(xi ))

+(V L(x i+[n i�2]+1)&V L(x i+n i+1)) (11)

Since V L(r) is a decreasing function of distance r, the inspection of the dis-
tances that appear in Eq. (11) shows that the first energy difference is
negative while the second one is positive. Hence the net outcome can only
be established by calling additional properties of V L(r). We use the con-
vexity property of V L(r) (for r�2). Estimating E L

i (YL)&E L
i (X ) amounts

to estimating the variations of V L(r) at the intervals [xi , x i+[n i �2]] and
[xi+[ni �2]+1, xi+ni+1] (see Sect. 2). First suppose that ni is even.
Then both intervals are of the same length, ni �2, but the second one is
shifted to the right with respect to the first one. Therefore by convexity

V L(x i+n i�2+1)&V L(xi+n i+1)�V L(xi )&V L(xi+n i �2) (12)

and consequently

EL
i (YL)&E L

i (X )�0 (13)

which is the desired result. However if ni is odd, one of the intervals, the
one located more to the right, is longer by 1 and an analogous reasoning
does not reproduce inequality (13). Translating the longer interval to the
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left, so that its left end coincides with the left end of the shorter one, we
obtain by convexity

EL
i (YL)&E L

i (X )�V L(xi+[ni �2])&V L(xi+[ni �2]) (14)

Remark. In a similar way one can derive a stronger inequality,
namely the r.h.s. of (14) can be replaced by V(x i+ni )&V(xi+n i+1).

To get an estimate of the external energy E ext
4 (YL)&E ext

4 (X ) it remains
to find the counterparts of inequalities (13) and (14) in the case of the right
environment. For this purpose it is convenient to introduce a second coor-
dinate-axis, the y-axis, similar to the x-axis but pointing in the opposite
direction. We keep using the notions of left and right according to the
x-axis. The zero of the y-axis is set at the 1st (i.e., most to the left) particle
of the right environment, so that again the y-position of a particle in 4
coincides with the distance between that particle and the right environ-
ment. Now a while of reflection enables us to realize that the interaction
energies with the right environment can be obtained from the interaction
energies with the left environment by replacing xi by yi and interchanging
the square and curly brackets. Thus the counterparts of (9) and (10) read

E R
i (X )=V R( yi )+V R( yi+n i+1) (15)

and

E R
i (YL)=V R( yi+[ni �2])+V R( yi+[ni �2]+1) (16)

respectively, and the counterpart of (11) is

E R
i (YL)&E R

i (X )=(V R( yi+[ni �2])&V R( y i ))

+(V R( yi+[ni �2]+1)&V R( y i+ni+1)) (17)

Again, if ni is even we find

E R
i (YL)&E R

i (X )�0 (18)

and if ni is odd:

ER
i (YL)&E R

i (X )�V R( yi+[ni �2])&V R( yi+[ni �2]) (19)
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Summing up, the external energy variation on passing from X to YL has
an upper bound of the form

E ext
4 (YL)&E ext

4 (X )=E L
4(YL)&E L

4(X )+E R
4(YL)&E R

4(X )

= :
k+1

i=1

(E L
i (YL)&E L

i (X ))+ :
k+1

i=1

(E R
i (YL)&E R

i (X ))

� :
k+1

i=1

(V L(xi+[ni�2])&V L(xi+[ni �2]))

+(V R( yi+[ni �2])&V R( y i+[ni �2])) (20)

Again a while of reflection enables us to write down the upper bound for
the change in the total external energy on passing from X to YR , that
represents a counterpart of (20). It is enough to interchange in (20) xi with
yi and R with L:

E ext
4 (YR)&E ext

4 (X )=E L
4(YR)&E L

4(X )+E R
4(YR)&E R

4(X )

= :
k+1

i=1

(E L
i (YR)&E L

i (X ))+ :
k+1

i=1

(E R
i (YR)&E R

i (X ))

� :
k+1

i=1

(V R( y i+[ni �2])&V R( yi+[ni �2]))

+(V L(x i+[n i �2])&V L(x i+[n i �2])) (21)

By inspection of (20) and (21) one finds that the upper bound given in (20)
is just the opposite of the upper bound given in (21). Thus, if E ext

4 (YL)&
E ext

4 (X )>0, then its upper bound (20) is strictly greater than zero, conse-
quently the upper bound (21) is strictly less than zero what implies that
E ext

4 (YR)&E ext
4 (X )<0 and vice versa. Therefore we proved that either

E ext
4 (YL)&E ext

4 (X ) or E ext
4 (YR)&E ext

4 (X ) is non-positive.

Remark. Let us note here that the lemma is valid also if k=0.

Stage Two: Estimating Internal Energy Variation. Now we are
going to estimate the internal energy difference E int

4 (YL)&E int
4 (X ), which

appears to be a considerably more laborious task than it was the case for
the external energy difference. To arrive at a satisfactory upper bound of
E ext

4 (YL)&E ext
4 (X ) we represented the external energy E ext

4 (YL) and
E ext

4 (X ) by a sum of external energies of pairs of particles in 4 that con-
stitute 2-molecules in the configuration YL(YR). Such a partition of the
external energy led to energy differences that could be estimated by means
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of the convexity property of the interaction involved. We shall need a coun-
terpart of this partition for E int

4 (YL) and E int
4 (X ). This time a natural object

is not a pair of particles but two pairs of particles that constitute two 1st
nearest-neighbor 2-molecules in YL(YR), two 2nd nearest-neighbor
2-molecules, and so on, until a pair of (k+1)th nearest-neighbor
2-molecules. We can define in a natural way the internal interaction energy
of those objects, in terms of V(r). First consider a pair of 1st nearest
neighbor 2-molecules in YL , say the i th and (i+1)th one, i=2,..., k&1 (so
that the boundary molecules, the 1st and the (k+1)th one, are excluded
from our consideration for a moment). To build up the i th 2-molecule in
YL , we pick up the right particle of the (i&1)th molecule in X and move
it to the right by distance [ni �2], then the left particle of the i th molecule
in X and move it by distance [ni �2] to the left. Thus the i th and (i+1)th
molecules in YL are separated by the distance x (1)

i +1, where

x (1)
i := g(ni , n i+1)=[ni �2]+[ni+1 �2] (22)

and we used the function g(s, t) defined in the Appendix. The internal inter-
action energy of the pair of molecules considered is defined as the sum of
all the four interaction energies V(r) between the particles separated only
by the gap x (1)

i :

E (1)
i (YL)=EYL

(n i , ni+1) :=(V(x (1)
i +1)+V(x (1)

i +2))

+(V(x (1)
i +2)+V(x (1)

i +3)) (23)

While according to our description above the definitions (22) and (23) do
not apply to these cases i=1 and i=k, a direct inspection shows that

x (1)
1 = g(n1 , n2), x (1)

k = g(nk , nk+1) (24)

and

E (1)
1 (YL)=EYL

(n1 , n2)

:=(V(x (1)
1 +1)+V(x (1)

1 +2))+(V(x (1)
1 +2)+V(x (1)

1 +3))

E (1)
k (YL)==EYL

(nk , nk+1)

:=(V(x (1)
k +1)+V(x (1)

k +2))+(V(x (k)
1 +2)+V(x (1)

k +3)) (25)

i.e., these definitions apply to all i=1,..., k. The quantities x (1)
i and E (1)

i (YL)
can be thought of as the values of the functions g and EYL

evaluated at the
pairs (ni , ni+1), i=1,..., k, of two consecutive gaps in X4 , respectively.
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A pair of 2nd nearest-neighbor molecules in YL , say the i th and
(i+2)th one, is separated by two consecutive gaps between 1st nearest-
neighbor molecules, x (1)

i and x (1)
i+1 . From the point of view of the interac-

tion energies between the particles constituting these molecules, they are
separated by one gap of x (2)

i empty sites, where

x(2)
i :=x (1)

i +x (1)
i+1+2=[n i�2]+[n i+2 �2]+(n i+1+2) (26)

Consequently we can define the internal interaction energy of the pair con-
sidered of 2nd nearest-neighbor molecules in YL , E (2)

i (YL), as the corre-
sponding energy between 1st nearest neighbors, i.e., by replacing simply
x(1)

i in Eq. (23) by x (2)
i .

While in terms of 1st nearest-neighbor gaps, ni , the pair of 1st nearest-
neighbor molecules, the i th and (i+1)th one, was associated with the pair
(ni , ni+1), the pair of 2nd nearest neighbor molecules, i th and (i+2)th, is
associated with two consecutive pairs of such pairs ((ni , ni+1), (ni+1 ,
ni+2)). But from the point of view of the interaction energies between the
particles constituting the i th and (i+2)th molecules, the transition from
1st nearest-neighbor molecules to 2nd nearest neighbor molecules can be
described as a ``renormalization process'' that maps two consecutive pairs
of consecutive 1st nearest-neighbor gaps into a pair of consecutive 2nd
nearest-neighbor gaps:

((ni , ni+1), (ni+1 , ni+2)) � (ni+(ni+1+2), ni+2+(n i+1+2)) (27)

Thus the pair of 2nd nearest-neighbor molecules, the i th and (i+2)th one,
can also be associated with one pair of gaps��the pair of consecutive 2nd
nearest-neighbor gaps (ni+(ni+1+2), ni+2+(ni+1+2)). Then in terms of
the consecutive 2nd nearest-neighbor gaps

x(2)
i =x(n i+(ni+1+2), ni+2+(ni+1+2)) (28)

and

E (2)
i (YL)=EYL

(ni+(ni+1+2), ni+2+(ni+1+2)) (29)

This construction can be naturally continued: the pair of 3rd nearest-
neighbor molecules, the i th and (i+3)th one, is associated with the pair of
consecutive triples of consecutive 1st nearest-neighbor gaps

((ni , ni+1 , ni+2), (ni+1 , ni+2 , ni+3)) (30)
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or, after renormalizing, with the pair of 3rd nearest-neighbor gaps

(ni+(ni+1+2)+(ni+2+2), ni+3+(ni+1+2)+(ni+2+2)) (31)

Consequently

x (3)
i =x(ni+(n i+1+2)+(ni+2+2), n i+2+(ni+1+2)+(ni+2+2)) (32)

and

E (3)
i (YL)=EYL

(ni+(ni+1+2)+(ni+2+2), ni+3+(ni+1+2)+(ni+2+2))

(33)

What we have said above enables us to represent E int
4 (YL) as follows:

E int
4 (YL)= :

i=k

i=1

E (1)
i (YL)+ :

i=k&1

i=1

E (2)
i (YL)+ } } } +E (k)

1 (YL) (34)

where the last component in the above equation stands for the internal
interaction energy of the 1st and the last, i.e., (k+1)th molecule in YL .

Having defined a partition of E int
4 (YL) we have to construct a suitable

partition of E int
4 (X ), so that.the energy differences that will appear even-

tually in E int
4 (YL)&E int

4 (X ) can be shown to be negative, by means of con-
vexity properties. We have in mind Lemma A1 of the Appendix.

We start with the level of 1st nearest neighbors. Since in E (1)
i (YL),

given by Eq. (23), the energies V(r) group naturally into two pairs, so that
each distance involved in one pair has a counterpart differing by 1 in the
second pair, it would certainly be convenient to preserve this property in
a partition of E int

4 (X ) we are searching for. Then instead of comparing
some four energies in E int

4 (X ) with the four energies in E (1)
i (YL) we would

have to compare only one group of two energies in E (1)
i (YL) with a pair of

energies in E int
4 (X ).

Let us start with the pair V(x (1)
i +1), V(x (1)

i +2) of E (1)
i (YL). In order

to be able to apply Lemma A1, the corresponding energies in E int
4 (X )

should be associated with some distances, say r1<r2 , such that r1+r2�
(x (1)

i +1)+(x (1)
i +2) and r1�x (1)

i +1<x (1)
i +2�r2 . Searching for such

distances is facilitated considerably by Lemma A2, which gives lower and
upper bounds for a quantity like x (1)

i . We note that the bounds are the best
ones, since they can be attained. The particles that constitute the i th and
(i+1)th 2-molecules in YL , whose internal energy is E (1)

i (YL), come from
the i th, (i+1)th and (i+2)th 2-molecules in X4 , separated by the gaps of
ni and ni+1 empty sites, or distances ni+1 and ni+1+1, respectively.
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In order not to consider from the very beginning the specific behavior
of energies at the borders of X4 we limit the index i to the interval
2�i�k&1. It will be convenient in the sequel to label the particles that
constitute the i th, (i+1)th and (i+2)th 2-molecules in X4 by a, b, c, d, e,
f, in the order from the left to the right. Thus ra, b=rc, d=re, f=1, where
ra, b stands for the distance between the particles labelled a, b, etc.

In what follows we shall label even (odd) integers by the sub-
script ``even'' (``odd ''). First suppose that ni=neven and n i+1=nodd . Then by
Lemma A4, for neven<nodd

neven+1�x (1)
i +1<x (1)

i +2�nodd+1 (35)

and

(neven+1)+(nodd+1)=(x (1)
i +1)+(x (1)

i +2) (36)

For neven>nodd , neven has to be interchanged with nodd in Ineq. (35).
Therefore, according to Lemma A4 there is no other choice than r1=
min[neven+1, nodd+1] and r2=max[neven+1, nodd+1]. Fortunately, there
are particles separated by these distances, we can set either r1=rb, c and
r2=rd, e or vice versa. The second group of longer by 1 distances can be
realized as either r1+1=rb, d (or ra, c) and r2+1=rc, e (or rd, f) or vice
versa. Now, by Lemma A1

V(rbc)+V(rd, e)=V(neven+1)+V(nodd+1)�V(x (1)
i +1)+V(x (1)

i +2)

(37)

and a similar inequality is satisfied if rb, c , rd, e are replaced by rb, d , rc, e

(longer by 1) and all other distances in Ineq. (37) are expanded by 1.
Summing up, in the case ni=neven and n i+1=nodd a good candidate for the
counterpart of E (1)

i (YL) in X4 is

E (1)
i, (e, o)=(V(rb, c)+V(rd, e))+(V(rb, d )+V(rc, e))

=(V(neven+1)+V(nodd+1))+(V(neven+2)+V(nodd+2)) (38)

Note that only interactions between 1st nearest-neighbor 2-molecules enter
into E (1)

i, (e, o) , and two one, out of four possible for each pair of 2-molecules,
have been picked up.

In the second step we suppose that both ni and ni+1 are odd, say
ni=nodd and ni+1=modd . Then by Lemma A4, for nodd<modd

nodd+2�x (1)
i +1<x (1)

i +2�modd+1 (39)
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while for nodd<modd , nodd and modd have to be interchanged in Ineq. (39)
If nodd=modd , then

nodd+1=x (1)
i +1<x (1)

i +2=nodd+2 (40)

Whatever the relation between nodd find modd ,

nodd+modd+3=(x (1)
i +1)+(x (1)

i +2) (41)

Therefore, the distances r1 and r2 are determined uniquely, like in the first
step. Trying to realize r1 and r2 as interparticle distances we have to be
careful not to run into conflict with the choice made previously. The two
consecutive gaps of nodd and modd empty sites can be preceded by an even
gap, so two interactions between particles belonging to the pair of 1st
nearest-neighbor 2-molecules that are separated by the gap of nodd empty
sites might have already been used. Therefore, in the case ni=nodd and
ni+1=modd we choose for the counterpart of E (1)

i (YL) in X4 the energy

E (1)
i, (o, o)=(V(rb, d )+V(rd, e))+(V(ra, d )+V(rc, e))

=(V(nodd+2)+V(modd+1))+(V(nodd+3)+V(modd+2)) (42)

In the third step we suppose that ni=nodd and ni+1=neven . Then by
Lemma A4, for nodd<neven

nodd+2�x (1)
i +1<x (1)

i +2�neven+2 (43)

and

(nodd+2)+(neven+2)=(x (1)
i +1)+(x (1)

i +2) (44)

For nodd>neven , neven has to be interchanged with nodd in Ineq. (43).
Therefore according to Lemma A1 there is no other choice than r1=
min[neven+2, nodd+2] and r2=max[neven+2, nodd+2]. Therefore in the
case ni=nodd and ni+1=neven we choose for the counterpart of E (1)

i (YL) in
X4 the energy

E (1)
i, (o, e)=(V(rb, d )+V(rc, e))+(V(ra, d )+V(rc, f))

=(V(nodd+2)+V(neven+2))+(V(nodd+3)+V(neven+3)) (45)

Our definition of E (1)
i, (o, e) is not in conflict with those in the previous two

situations.
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In the last step we suppose that both ni and ni+1 are even, say
ni=neven and ni+1=meven . Then by Lemma A4, for neven<meven

neven+2�x (1)
i +1<x (1)

i +2�meven+1 (46)

while for neven>meven , neven and meven have to be interchanged in Ineq. (46).
If neven=meven , then

neven+1=x (1)
i +1<x (1)

i +2=neven+2 (47)

Whatever the relation between neven and meven ,

neven+meven+3=(x (1)
i +1)+(x (1)

i +2) (48)

Therefore, again the distances r1 and r2 are determined uniquely. As a
counterpart of E (1)

i (YL) in X4 in the case n i=neven and n i+1=meven we
choose the energy

E (1)
i, (e, e)=(V(rb, c)+V(rc, e))+(V(rb, d )+V(rd, f))

=(V(neven+1)+V(meven+2))+(V(neven+2)+V(meven+3)) (49)

This choice is compatible with the fact that the gap preceding neven and the
one following meven can be odd.

So far we have succeeded in selecting a component of E int
4 (X ) that is

not less than � i=k&1
i=2 E (1)

i (YL). For any sequence of gaps, n2 , n3 ,..., nk we
have assigned, by means of definitions (38), (42), (45) and (49), a sum of
pair interactions in such a way that all the four pair interactions between
the particles constituting 1st nearest-neighbor 2-molecules separated by ni ,
i=2, 3,..., k, empty sites enter the sum. So the sum considered can be
viewed as the sum over groups of four two-body interactions between par-
ticles of 1st nearest neighbor 2-molecules in X.

It remains to take care of boundary terms. Staying at the level of 1st
nearest neighbors, in YL they consist of eight pair interactions: the four
ones being the components of E (1)

1 (YL) and another four��the components
of E (1)

k (YL). The interactions named can be compared with the following
eight components of E int

4 (X ): two interactions between the left atom
and the first 2-molecule, two interactions between the 1st and the 2nd
2-molecules, two interactions between the k th and (k+1)th 2-molecules
and two interactions between the k th 2-molecule and the right atom. It is
sufficient to consider in detail the left end of 4. The interaction of the
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left atom separated by n1 empty sites from the 1st molecule amounts
obviously to

V(n1+1)+V(n1+2) (50)

The two still ``free'' interactions between the 1st and the 2nd molecules are:

V(rb, c)+V(ra, c)=V(n2+1)+V(n2+2), if n2 is odd
(51)

V(ra, c)+V(ra, d )=V(n2+2)+V(n2+3), if n2 is even

Therefore we define the left boundary internal energy as:

E (1)
1, o=(V(n1+1)+V(n2+1))+(V(n1+2)+V(n2+2)), if n2 is odd

E (1)
1, e=(V(n1+1)+V(n2+2))+(V(n1+2)+V(n2+3)), if n2 is even

(52)

Comparing E (1)
1, o and E (1)

1, e with the energies E (1)
i, (e, o) , E (1)

i, (o, o) , E (1)
i, (o, e) , and

E (1)
i, (e, e) , defined by Eqs. (38), (42), (45), (49) we find that

E (1)
1, o {=E (1)

1, (e, o) ,
�E (1)

1, (o, o) ,
if n1 is even
if n1 is odd

(53)

and

E (1)
1, e {=E (1)

1, (e, e) ,
�E (1)

1, (o, e) ,
if n1 is even
if n1 is odd

(54)

Thus

E (1)
1, e&E (1)

1 (YL)�0 (55)

and

E (1)
1, o&E (1)

1 (YL)�0 (56)

At the right end the situation is completely analogous. It is enough to
replace n1 by nk , n2 by nk+1 and interchange the indices e and o in the for-
mulae (52), (53, (54) to arrive at the right boundary internal energies E (1)

k, o

and E (1)
k, e that are not less than E (1)

k (YL).
This lengthy sequence of definitions, given above, amounts to the

following: by means of definitions (38), (42), (45), (49), (53), (54) and the
remark after inequality (56), we defined the function EX on pairs of
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consecutive gaps, such that its values on pairs of 1st nearest-neighbor gaps,
E (1)

i (X ) :=EX (ni , ni+1), i=1,..., k, satisfy the inequalities

E (1)
i (X )&E (1)

i (YL)�0 (57)

The �k
i=1 E (1)

i (X ) can be taken as the required counterpart of
�k

i=1 E (1)
i (YL). Now following the inductive procedure developed to define

the partition (34) of E int
4 (YL), we apply EX to pairs of consecutive 2nd

nearest-neighbor gaps and define

E (2)
i (X )=EX (ni+(ni+1+2), ni+2+(ni+1+2)) (58)

By Lemma A1 the inequality (57) implies that

E (2)
i (X )&E (2)

i (YL)�0 (59)

so �k&1
i=1 E (2)

i (X ) can stand for the required counterpart of �k&1
i=1 E (2)

i (YL).
Continuing this process we arrive at the following partition of E int

4 (X ):

E int
4 (X )= :

k

i=1

E (1)
i (X )+ :

k&1

i=1

E (2)
i (X )+ } } } +E (k)

1 (X )

+V \n1+ :
k+1

i=2

(n i+2)+1+ (60)

and moreover we obtain that

E int
4 (X )&E int

4 (YL)�V \n1+ :
k+1

i=2

(ni+2)+1+>0 (61)

where V(n1+�k+1
i=2 (ni+2)+1) stands for the interaction of the left atom

with the right one. Clearly, if we substitute YR for YL we arrive at the same
conclusion as (61).

Remark. The inequality (61) holds true if there are no molecules
between two atoms.

Lemma 2 (Eliminating n-molecules with n�3). Consider a lattice
gas (1) with an interaction energy V2 , such that V2(1)�0. Let X be a con-
figuration containing triples of particles separated by distance one, whose
density is nonzero. Then there is a configuration Y, with \(Y )=\(X ), free
of such triples. Moreover, if V2(2)�(7W&V2(1))�2, then e(Y )<e(X ),
where W=��

r=3 V2(r).
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Corollary. In a lattice gas of Lemma 2, if V2(2)�(7W&V2(1))�2,
then the ground-state configurations in the support of the strictly ergodic
ground-state measure do not contain triples of particles separated by dis-
tance one. In particular, such ground-state configurations do not contain
n-molecules with n�3.

Proof. The idea of our proof is to start with an arbitrary configura-
tion containing forbidden triples of particles, that is triples of particles
separated by distance one, and transform it, using Lemma 1 and some
rearrangements of particles, whose energy costs are controlled by simple
bounds, into another configuration of the same density but free of the
forbidden triples of particles. The proof is completed by showing that the
overall energy cost of attaining the final configuration is negative, provided
that a suitable condition on the interaction energy is imposed.

Let X be an arbitrary configuration with the particle density \(X )
�1�2 and whose density of the forbidden triples, \3(X ), satisfies the
inequality \3(X )>0. Removing one particle from each forbidden triple we
lower the energy by at least V2(2)+V2(1) and arrive at a configuration X�
whose particle density satisfies the double inequality

1�2>\(X� )�\(X )&\3(X ) (62)

Consider the class of configurations that consist of 2-molecules and atoms
(separated by at least two empty sites) exclusively and whose density if
\(X� ). The configuration X� belongs to this class. Let Y be the lowest energy
density configuration in this class, thus e(Y )�e(X� ). By (62), \(X )&\(X� )
�\3(X ), therefore the energy density variation e(X )&e(X� ) is bounded
from below by (V2(2)+V2(1))(\(X )&\(X� )). Consequently, we arrive at
the following lower bound for e(X ):

e(X )>(V2(2)+V2(1))(\(X )&\(X� ))+e(Y ) (63)

By Lemma 1 the configuration Y does not contain atoms, thus it
consists exclusively of 2-molecules. It is clear that there is only one (up
to translations) configuration of density 1�2 that consists exclusively of
2-molecules. It is the periodic configuration whose elementary cell has the
form [ v v b b ], where the filled circles stand, say, for occupied sites. The
2-molecules are separated by distances 3, i.e., by 2 unoccupied sites.
Obviously, a configuration that consists exclusively of 2-molecules and
whose particle density is less than 1�2, contains arrangement of 3 unoc-
cupied sites in a row wit a non-vanishing density. Such a configuration can
be thought of as a collection of local particle configurations that are
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separated by at least 3 unoccupied sites in a row. Shifting the local
configurations separated by at least 3 unoccupied sites in a row, while
respecting the conditions that they cannot be separated by less than 2
unoccupied sites in a row, we can create arrangement of 6 unoccupied sites
in a row. Then in the middle of the 6-site gap obtained we insert a 2-
molecule. The whole procedure is repeated until the particle density comes
back to the value \(X ). The result is a configuration Y� . Now we can try
to compare the energy densities e(Y� ) and e(X ) and see if e(X ) can be
strictly larger than e(Y� ), what would prove that ground-state configura-
tions do not contain forbidden arrangements of particles. Suppose that we
can bound from above by 2 the energy cost of creating a 6-site gap and
inserting there a 2-molecule. Then we can compare e(Y� ) and e(Y ):

e(Y� )&e(Y )�2(\(X )&\(X� ))�2 (64)

By means of inequalities (62) and (63), we arrive at the following
inequality relating e(X ) and e(Y� ):

e(X )>e(Y� )+(V2(2)+V2(1)&2�2)(\(X )&\(X� )) (65)

Therefore, the ground-state configurations do not contain forbidden
arrangements of particles if V2(2)+V2(1)�2�2.

It remains to derive the upper bound 2. For that we first estimate the
energy cost of translating a single particle by distance 1. Let a chosen par-
ticle be separated from its left nearest neighbor by distance r and from its
right nearest neighbor by distance r$. The total interaction energy of the
particle can be viewed as the sum of the interaction energies E (1)

L (r) and
E (1)

R (r$) with all the particles to its left and to its right, respectively. Sup-
pose we shift our particle by distance 1 to the left. Then the change in the
total energy of the particle is bounded from above by E (1)

L (r&1)&E (1)
L (r),

since E (1)
R (r$+1)&E (1)

R (r$)�0. Let x i , i=1, 2,..., be the distance between
the i th left nearest neighbor and the (i+1)th left nearest neighbor. Then

E (1)
L (r&1)&E (1)

L (r)

=(V2(r&1)+V2(r&1+x1)+V2(r&1+x1+x2)+ } } } )

&(V2(r)+V2(r+x1)+V2(r+x1+x2)+ } } } )

=V2(r&1)+&(V2(r)&V2(r&1+x1))&(V2(r+x1)

&V2(r&1+x1+x2))& } } } �V2(r&1) (66)
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By means of inequality (66) we are able to give a simple upper bound for
the energy cost of translating a local configuration considered above by
distance 1 to the left (right). This energy does not exceed the sum of
V2(r&1) over all distances r, r�4, between the particles of the configura-
tion considered and the left nearest neighbor particle of this configuration:

:
�

r=4

nrV2(r&1)� :
�

r=4

V2(r&1)=W (67)

where nr=1 if the local configuration considered contains a particle
separated by distance r from the left nearest-neighbor particle of this con-
figuration, and nr=0 otherwise. Consider again a configuration that is a
collection of local configurations separated by at least 3 unoccupied sites.
We can create a 6-site gap between two local configurations by shifting a
chosen local configuration by distance one to the left, then shifting its right
nearest-neighbor local configuration by distance 1 to the right, what creates
a 5-site gap between the configuration chosen and its right nearest-
neighbor local configuration, and after that shifting simultaneously the
right nearest-neighbor and the right next nearest-neighbor local configura-
tions by distance 1 to the right. Each of the three reshuffles of local con-
figurations increases the energy by no more than W. Thus, a 6-site gap can
be created at the cost that does not exceed 3W. Now inserting a 2-molecule
in the middle of the 6-site gap created will cost no more than 4W+V2(1).
Therefore, we can set 2=7W+V2(1).

5. SOME EXTENSIONS OF THE MAIN RESULT AND
APPLICATIONS

The both lemmas, formulated and proved in the previous section, set
conditions on the value of V2 at distance one, which go in opposite direc-
tions. It is for this reason that in Theorem 1 this value is set to zero.
However, it is not hard to see that with some effort this conditions can be
relaxed.

First, suppose V2(1)<0. This condition fits the assumptions of
Lemma 1 but not those of Lemma 2. In the latter case, the energy gain on
breaking forbidden triples of particles is as before V2(2)+V2(1) but is
diminished now by the second term and may even become negative. On the
other hand, the energy increase on inserting a 2-molecule into a six-site
gap, 4W+V2(1), is also diminished, again provided the latter expression is
positive. Thus, Theorem 1 holds true also for V2(1)<0, but such that
V2(2)�(7W&V2(1))�2, which can only take place if |V2(1)|<2V2(2).
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Second, suppose V2(1)>0. Now, in turn, this condition fits the
assumptions of Lemma 2 but not those of Lemma 1, which is a more severe
problem to overcome than the previous one. The final conclusion of our
proof of Lemma 1 is a consequence of the fact that the energy difference of
an initial local configuration, consisting of two atoms separated by some k
2-molecules, and the final one, consisting of k+1 2-molecules, is not
smaller than V2(ratom)&V2(1), where ratom is an arbitrary distance between
the two atoms in the initial local configuration. If, as we have supposed
originally, V2(1)=0, then the lower bound obtained implies that the
energy difference considered is positive what completes our proof of
Lemma 1. If however V2(1)>0, to arrive at the same conclusion by means
of a similar proof we would have to limit from above ratom , which is not
possible. Instead, we can turn to a strategy analogous to that used in
Lemma 2.

In order to restrict the set of possible ground-state configurations to
the set C 1

2, \ we have to get rid of forbidden pairs of particles, i.e., particles
separated by distance 1. We fix distance r�4 and choose a particle density
\<1�r. Removing one particle from each forbidden pair we lower the
energy by V1(1) and arrive at a configuration of lower density, consisting
of atoms exclusively. The ground-state configuration among such con-
figurations is a most homogeneous configuration, in which the smallest
distance d between neighboring atoms is greater than r. Then we insert
back the removed particles in such a way that the smallest distance
between neighboring atoms is greater than [d�2]+1. Now, if V1(1)>
2 �r�[d�1]+1 V1(r), then the obtained configuration has a lower energy
density. Therefore, under the stated conditions, any ground-state configura-
tion consists only of atoms and consequently is a most homogeneous con-
figuration.

Finally, we would like to point out that our Theorem 1 and its
generalizations discussed above can be used to study properties of two- and
three-dimensional lattice gases.

Consider first a two-dimensional lattice gas on the square lattice Z2.
Let (x, y) be an orthogonal coordinate system, such that the its axes coin-
cide with lattice directions with unit lattice constants. Suppose that with
respect to this coordinate system the Hamiltonian H4 decomposes into
H x

4+H y
4 , where H x

4 is a sum of two-body potentials supported by pairs
of sites along the x-direction, and H y

4 is an analogous sum but in the
y-direction. Then, knowing the one-dimensional ground-state configura-
tions of H x

4 , we can easily construct two-dimensional ground-state con-
figurations of H4 . For instance, the particle configurations of lattice lines
in the x-direction can be chosen as the ground-state configurations of H x

4 ,
with the condition that, going in the positive y-direction, the configuration
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of the next lattice line is shifted by one lattice constant in the positive
x-direction. The Hamiltonians considered above naturally appear in sur-
face physics.(11)

Another situation, where our results are applicable, is the realm of
three-dimensional layered systems, like those studied extensively by Fisher
and collaborators, see for instance ref. 10.

APPENDIX

Definition 1. We say that a real function f, defined on integers
n�n0 , is convex, if for every n�n0+1 the following inequality is satisfied:

f (n+1)+ f (n&1)�2f (n) (68)

Lemma A1 (Convexity of decreasing f in Z). Let integers x, y, s, t
satisfy the inequalities

n0�x�s<t� y and x+ y�s+t (69)

and let f be a convex and decreasing function for integers n�no . Then

f (x)+ f ( y)� f (s)+ f (t) (70)

Definition 2. For any positive integer n, [n�2] is the greatest
integer that does not exceed n�2 while [n�2]=n&[n�2].

Lemma A2 (Properties of bracket functions [ . ] and [ . ]). For
positive integers n�m, [n�2]�[m�2], and [n�2]�[m�2].

Moreover,

_m+n
2 &={_

m
2 &+_n

2&+1,

_m
2 &+_n

2& ,

if m and n are odd

otherwise
(71)

and

{m+n
2 =={{

m
2 =+{n

2=&1,

{m
2 =+{n

2= ,

if m and n are odd

otherwise
(72)
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Definition 3. For an ordered pair of positive integers (s, t) we
define

g(s, t)=[s�2]+[t�2] (73)

Lemma A3 (Properties of function g). For positive integers s�t,

s� g(s, t)�t (74)

More refined bounds are given in Lemma A4. For positive integers p, s, t

g(s+ p, t+ p)= g(s, t)+ p (75)

Lemma A4 (Best bounds for function g). Let neven and meven be two
positive even integers and nodd and modd��two positive and odd integers
and let ge, o be an abbreviation for g(neven , nodd ), etc. Then

EO: (neven , nodd )

(EO1) If neven<nodd , then neven� ge, o�nodd&1

(EO2) If neven>nodd , then nodd� ge, o�neven&1

2ge, o=neven+nodd&1 (76)

OO: (nodd , modd )

(OO1) If nodd<modd , then nodd+1� go, o�modd&1

(OO2) If nodd>modd , then modd+1� go, o�nodd&1

(OO3) If nodd=modd , then go, o=nodd=modd

2go, o=modd+nodd (77)

OE: (nodd , neven)

(OE1) If nodd<neven , then nodd+1� go, e�neven

(OE2) If nodd>neven , then neven+1� go, e�nodd

2go, e=nodd+neven+1 (78)

EE: (neven , meven)

(EE1) If neven<meven , then neven+1� ge, e�meven&1

(EE2) If neven>meven , then meven+1� ge, e�neven&1

2ge, e=meven+neven (79)
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